1. The rudder on a ship is modelled as a uniform plane lamina having the same shape as the region R which is enclosed between the curve with equation $y=2 x-x^{2}$ and the x-axis.
(a) Show that the area of R is $\frac{4}{3}$.
(b) Find the coordinates of the centre of mass of the lamina.
2.

Figure 1

A uniform lamina occupies the region R bounded by the x-axis and the curve

$$
y=\sin x, \quad 0 \leq x \leq \pi,
$$

as shown in Figure 1.
(a) Show, by integration, that the y-coordinate of the centre of mass of the lamina is $\frac{\pi}{8}$.

Figure 2

A uniform prism S has cross-section R. The prism is placed with its rectangular face on a table which is inclined at an angle θ to the horizontal. The cross-section R lies in a vertical plane as shown in Figure 2. The table is sufficiently rough to prevent S sliding. Given that S does not topple,
(b) find the largest possible value of θ.
1.
(a) $\quad A=\int_{0}^{2}\left(2 x-x^{2}\right) \mathrm{d} x$
$=\left[x^{2}-\frac{x^{3}}{3}\right]$.
$A=\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{2}=4-\frac{8}{3}=\frac{4}{3} *$
cso
A1
4
(b) $\bar{x}=1$ (by symmetry)
$\frac{4}{3} \bar{y}=\frac{1}{2} \int y^{2} \mathrm{~d} x=\frac{1}{2} \int\left(2 x-x^{2}\right)^{2} \mathrm{~d} x$
$=\frac{1}{2} \int\left(4 x^{2}-4 x^{3}+x^{4}\right) \mathrm{d} x$ A1
$=\frac{1}{2}\left[\frac{4 x^{3}}{3}-x^{4}+\frac{x^{5}}{5}\right]$
$\frac{4}{3} \bar{y}=\frac{1}{2}\left[\frac{4 x^{3}}{3}-x^{4}+\frac{x^{5}}{5}\right]_{0}^{2}=\frac{8}{15}$
$\bar{y}=\frac{8}{15} \times \frac{3}{4}=\frac{2}{5}$
accept exact equivalents
2.
(a) $\int_{0}^{\pi} \frac{1}{2} y^{2} \mathrm{~d} x=\int_{0}^{\pi} \frac{1}{2} \sin ^{2} x \mathrm{~d} x$
$=\frac{1}{4} \int_{0}^{\pi}(1-\cos 2 x) \mathrm{d} x$
$=\frac{1}{4}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi}$
$=\frac{\pi}{4}$
$\bar{y}=\frac{\pi / 4}{\int_{0}^{\pi} \sin x d x}=\frac{\frac{\pi}{4}}{2}=\frac{\pi}{8}$
A1 6
(b)

1. This question was a straightforward introduction to the paper. In part (a), nearly all recognised the use of integration and found the appropriate limits. In part (b), the majority used integration to find the x-coordinate instead of using the symmetry of the figure. This did waste time and was not always correctly done. Those who could remember a correct formula for the y-coordinate usually completed the question correctly.
2. The formula required in part (a) was not always well-known and even those that did quote it correctly were not always able to cope with the resulting integral. The second part was totally independent and was generally well-answered.
